Package deepnetts.eval
Class RegresionEvaluator
java.lang.Object
deepnetts.eval.RegresionEvaluator
- All Implemented Interfaces:
javax.visrec.ml.eval.Evaluator<NeuralNetwork,
javax.visrec.ml.data.DataSet<? extends MLDataItem>>
public class RegresionEvaluator
extends Object
implements javax.visrec.ml.eval.Evaluator<NeuralNetwork,javax.visrec.ml.data.DataSet<? extends MLDataItem>>
Evaluates regressor neural network for specified data set.
Assumes only one output at the moment.
TODO: f statistic
https://www.statisticshowto.com/probability-and-statistics/f-statistic-value-test/
-
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptionjavax.visrec.ml.eval.EvaluationMetrics
evaluate
(NeuralNetwork neuralNet, javax.visrec.ml.data.DataSet<? extends MLDataItem> testSet) static javax.visrec.ml.eval.EvaluationMetrics
macroAverage
(Collection<javax.visrec.ml.eval.EvaluationMetrics> metrics)
-
Constructor Details
-
RegresionEvaluator
public RegresionEvaluator()
-
-
Method Details
-
evaluate
public javax.visrec.ml.eval.EvaluationMetrics evaluate(NeuralNetwork neuralNet, javax.visrec.ml.data.DataSet<? extends MLDataItem> testSet) - Specified by:
evaluate
in interfacejavax.visrec.ml.eval.Evaluator<NeuralNetwork,
javax.visrec.ml.data.DataSet<? extends MLDataItem>>
-
macroAverage
public static javax.visrec.ml.eval.EvaluationMetrics macroAverage(Collection<javax.visrec.ml.eval.EvaluationMetrics> metrics)
-