Uses of Class
deepnetts.net.FeedForwardNetwork.Builder
Packages that use FeedForwardNetwork.Builder
-
Uses of FeedForwardNetwork.Builder in deepnetts.net
Methods in deepnetts.net that return FeedForwardNetwork.BuilderModifier and TypeMethodDescriptionFeedForwardNetwork.Builder.addFullyConnectedLayer
(int layerWidth) Adds to the network a fully connected layer with specified width and Relu activation function by default.FeedForwardNetwork.Builder.addFullyConnectedLayer
(int layerWidth, ActivationType activationType) Adds fully connected addLayer with specified width and activation function to the network.FeedForwardNetwork.Builder.addHiddenFullyConnectedLayers
(int... layerWidths) Adds to the network several hidden fully connected layers with specified widths and default hidden activation function by default.FeedForwardNetwork.Builder.addHiddenFullyConnectedLayers
(ActivationType activationType, int... layerWidths) Adds fully connected hidden layers with widths given in layerWidths param and given activation function type.FeedForwardNetwork.Builder.addInputLayer
(int layerWidth) Adds input layer with the specified layerWidth (number of inputs) to the network.FeedForwardNetwork.Builder.addInputLayer
(int layerWidth, int batchSize) FeedForwardNetwork.Builder.addLayer
(AbstractLayer layer) Adds custom layer to this network (which inherits from AbstractLayer)FeedForwardNetwork.Builder.addOutputLayer
(int width, ActivationType activationType) Adds output layer to the neural network with specified width (number of outputs) and activation function type.static FeedForwardNetwork.Builder
FeedForwardNetwork.builder()
Returns a builder for theFeedForwardNetwork
FeedForwardNetwork.Builder.hiddenActivationFunction
(ActivationType activationType) Sets default type of the activation function to use for all hidden layers in the network.FeedForwardNetwork.Builder.lossFunction
(LossType lossType) Sets loss function to be used by created neural network.FeedForwardNetwork.Builder.randomSeed
(long seed) Initializes random number generator with the specified seed in order to get same random number sequences used for weights initialization.