Package deepnetts.net.loss
Interface LossFunction
- All Known Implementing Classes:
BinaryCrossEntropyLoss
,CrossEntropyLoss
,MeanSquaredErrorLoss
public interface LossFunction
Base Interface for all loss functions.
Loss function is a component of a deep learning algorithm which calculates an error,
as a difference of actual (or predicted) and desired (target) output of a neural network.
The total error for some training is usually calculated as a average of errors for all individual input-output pairs.
The higher value of loss function, means higher error and lower accuracy of prediction.
- See Also:
-
Method Summary
Modifier and TypeMethodDescriptionfloat[]
addPatternError
(float[] predictedOutput, float[] targetOutput) Calculates pattern error for singe pattern for the specified predicted and target outputs, adds the error to total error, and returns the pattern error.addPatternError
(TensorBase predictedOutput, TensorBase targetOutput) void
addRegularizationSum
(float regSum) Adds specified regularization sum to total loss.float
float
getTotal()
Returns the total error calculated by this loss function.void
reset()
Resets the total error and pattern counter.default float
valueFor
(NeuralNetwork nnet, javax.visrec.ml.data.DataSet<? extends MLDataItem> dataSet) Calculates and returns loss function value for the given neural network and data set.
-
Method Details
-
addPatternError
float[] addPatternError(float[] predictedOutput, float[] targetOutput) Calculates pattern error for singe pattern for the specified predicted and target outputs, adds the error to total error, and returns the pattern error.- Parameters:
predictedOutput
- predicted/actual network output vectortargetOutput
- target network output vector- Returns:
- error vector error vector for the given predicted and target vectors
-
addPatternError
-
addRegularizationSum
void addRegularizationSum(float regSum) Adds specified regularization sum to total loss.- Parameters:
regSum
- regularization sum
-
getTotal
float getTotal()Returns the total error calculated by this loss function.- Returns:
- total error calculated by this loss function
-
getPatternLoss
float getPatternLoss() -
reset
void reset()Resets the total error and pattern counter. -
valueFor
default float valueFor(NeuralNetwork nnet, javax.visrec.ml.data.DataSet<? extends MLDataItem> dataSet) Calculates and returns loss function value for the given neural network and data set.- Parameters:
nnet
-dataSet
-- Returns:
-