Package deepnetts.data.norm
Class RangeScaler
java.lang.Object
deepnetts.data.norm.AbstractScaler
deepnetts.data.norm.RangeScaler
- All Implemented Interfaces:
Serializable
,javax.visrec.ml.data.preprocessing.Scaler<javax.visrec.ml.data.DataSet<MLDataItem>>
Normalize data set to specified range.
Using formula X = (X-MIN) / (MAX-MIN)
Effectively scales all inputs and outputs to specified [MIN,MAX] range
Normalizes inputs and outputs.
- Author:
- Zoran Sevarac
- See Also:
-
Constructor Summary
ConstructorsConstructorDescriptionRangeScaler
(float min, float max) Creates a new instance of range normalizer initialized to given min and max values. -
Method Summary
Modifier and TypeMethodDescriptionvoid
apply
(javax.visrec.ml.data.DataSet<MLDataItem> dataSet) Performs normalization on the given inputs.void
scaleInput
(TensorBase input) Normalize input of deployed model
-
Constructor Details
-
RangeScaler
public RangeScaler(float min, float max) Creates a new instance of range normalizer initialized to given min and max values.- Parameters:
min
-max
-
-
-
Method Details
-
apply
Performs normalization on the given inputs. x = (x-min) / (max-min)- Parameters:
dataSet
- data set to normalize
-
scaleInput
Description copied from class:AbstractScaler
Normalize input of deployed model- Specified by:
scaleInput
in classAbstractScaler
- Parameters:
input
-
-