Serialized Form
-
Package deepnetts.data.norm
-
Class deepnetts.data.norm.AbstractScaler
class AbstractScaler extends Object implements Serializable -
Class deepnetts.data.norm.DecimalScaler
class DecimalScaler extends AbstractScaler implements Serializable-
Serialized Fields
-
inputDivisor
float[] inputDivisor
-
outputDivisor
float[] outputDivisor
-
-
-
Class deepnetts.data.norm.MaxScaler
class MaxScaler extends AbstractScaler implements Serializable-
Serialized Fields
-
maxInputs
TensorBase maxInputs
-
maxOutputs
TensorBase maxOutputs
-
-
-
Class deepnetts.data.norm.MinMaxScaler
class MinMaxScaler extends AbstractScaler implements Serializable-
Serialized Fields
-
inDivider
TensorBase inDivider
-
maxInput
TensorBase maxInput
-
maxOutput
TensorBase maxOutput
-
minInput
TensorBase minInput
-
minOutput
TensorBase minOutput
-
outDivider
TensorBase outDivider
-
-
-
Class deepnetts.data.norm.RangeScaler
class RangeScaler extends AbstractScaler implements Serializable-
Serialized Fields
-
max
float max
-
min
float min
-
range
float range
-
-
-
Class deepnetts.data.norm.Standardizer
class Standardizer extends AbstractScaler implements Serializable-
Serialized Fields
-
mean
TensorBase mean
-
std
TensorBase std
-
-
-
-
Package deepnetts.net
-
Class deepnetts.net.ConvolutionalNetwork
- serialVersionUID:
- 7311052836990578126L
-
Class deepnetts.net.FeedForwardNetwork
- serialVersionUID:
- 5819940381359274290L
-
Class deepnetts.net.NeuralNetwork
class NeuralNetwork extends Object implements Serializable- serialVersionUID:
- 1L
-
Serialization Methods
-
readObject
Performs additional initialization after loading the network.- Parameters:
ois
-- Throws:
ClassNotFoundException
IOException
-
-
Serialized Fields
-
inputLayer
InputLayer inputLayer
Input layer. This layer accepts external inputs and sends them to the next layer -
inputWrapper
TensorBase inputWrapper
-
label
String label
Network's label -
layers
List<AbstractLayer> layers
Collection of all layers in this network (including input(first), output(last) and hidden(in between)). As a minimum neural network must have an input and output layer. -
lossFunction
LossFunction lossFunction
Loss function Loss function represents total network error for some data, and network learns by minimizing that error. Commonly used types of loss functions are Mean Squared Error for regression problems and and Cross Entropy for classification problems. -
mode
Mode mode
-
normalizer
AbstractScaler normalizer
-
outputLabels
String[] outputLabels
Labels for network outputs (classes) -
outputLayer
OutputLayer outputLayer
Output layer. This layer is the final step of processing network's input and its output is network's output. -
preprocessing
Preprocessing<TensorBase> preprocessing
-
regularizationSum
float regularizationSum
-
trainer
T extends Trainer trainer
-
-
-
Package deepnetts.net.layers
-
Class deepnetts.net.layers.AbstractLayer
class AbstractLayer extends Object implements Serializable- serialVersionUID:
- -3972836675081087082L
-
Serialized Fields
-
activation
ActivationFunction activation
Activation function for this layer. -
activationType
ActivationType activationType
Type of activation function for this layer. -
batchMode
boolean batchMode
-
batchSize
int batchSize
-
biases
Tensor1D biases
-
deltaBiases
Tensor1D deltaBiases
-
deltas
O extends TensorBase deltas
Deltas used for learning. -
deltaWeights
W extends TensorBase deltaWeights
Weight changes for current and previous iteration. -
depth
int depth
-
gradients
W extends TensorBase gradients
Gradients of a loss function calculates during a backward pass. -
height
int height
-
inputs
I extends TensorBase inputs
Inputs to this layer. A reference to outputs in previous layer, or external input in input layer). -
learningRate
float learningRate
Learning rate for this layer. -
mode
Mode mode
-
momentum
float momentum
-
nextLayer
AbstractLayer nextLayer
Next layer in network. -
optimizer
Optimizer optimizer
-
optimizerType
OptimizerType optimizerType
-
outputs
O extends TensorBase outputs
Layer outputs. -
prevDeltaBiases
Tensor1D prevDeltaBiases
-
prevDeltaWeights
W extends TensorBase prevDeltaWeights
Weight changes for current and previous iteration. -
prevLayer
AbstractLayer prevLayer
Previous layer in network. -
randomWeightsType
RandomWeightsType randomWeightsType
-
regL1
float regL1
-
regL2
float regL2
-
trainable
boolean trainable
-
weights
W extends TensorBase weights
Input weight matrix / connectivity matrix for previous layer. Used in FullyConnected and OutputLayer. MaxPooling does not have Weights and ConvolutionalLayer has weights in filters. -
width
int width
-
-
Class deepnetts.net.layers.ConvolutionalLayer
- serialVersionUID:
- -3972836675081087082L
-
Serialization Methods
-
readObject
- Throws:
ClassNotFoundException
IOException
-
-
Serialized Fields
-
fCenterX
int fCenterX
-
fCenterY
int fCenterY
-
filterCache
float[][] filterCache
-
filterCacheCreated
boolean filterCacheCreated
-
filterDepth
int filterDepth
Filter depth, corresponds to number of channels in previous layer. -
filterGroups
int filterGroups
-
filterHeight
int filterHeight
Filter height (rows) -
filters
Tensor4D filters
Convolutional filters. Filters are stored as tensors. -
filterWidth
int filterWidth
Convolutional filter width (columns) -
inGroupSize
int inGroupSize
-
maxIdx
int[][][][] maxIdx
-
multithreaded
boolean multithreaded
-
outGroupSize
int outGroupSize
-
padding
int padding
Border padding filled with zeros (0, 1 or 2) Usually half of the filter size -
stride
int stride
Convolution step, 1 by default. Number of steps convolutional filter is moved during convolution. Commonly used values 1, 2, rarely 3 -
useConvCache
boolean useConvCache
-
-
Class deepnetts.net.layers.FlattenLayer
-
Class deepnetts.net.layers.FullyConnectedLayer
class FullyConnectedLayer extends AbstractLayer<TensorBase,TensorBase, Tensor2D> implements Serializable - serialVersionUID:
- -8172689320815816927L
-
Serialized Fields
-
dropout
float dropout
-
useDropout
boolean useDropout
-
-
Class deepnetts.net.layers.InputLayer
class InputLayer extends AbstractLayer implements Serializable- serialVersionUID:
- 6519195289402298178L
-
Serialized Fields
-
tensorDim
int tensorDim
-
-
Class deepnetts.net.layers.MaxPoolingLayer
- serialVersionUID:
- 6257978737942468865L
-
Serialized Fields
-
filterHeight
int filterHeight
Filter dimensions. Commonly used 2x2 with stride 2 -
filterWidth
int filterWidth
Filter dimensions. Commonly used 2x2 with stride 2 -
maxIdx
int[][][][] maxIdx
Max activation idxs. Remember idx of max output for each filter position. [channel][row][col][2] -
stride
int stride
Filter step. Commonly used 2
-
-
Class deepnetts.net.layers.OutputLayer
- serialVersionUID:
- 4319240027730054207L
-
Serialized Fields
-
labels
String[] labels
-
lossType
LossType lossType
-
outputErrors
TensorBase outputErrors
-
singleOutInput
float singleOutInput
-
-
Class deepnetts.net.layers.SoftmaxOutputLayer
class SoftmaxOutputLayer extends OutputLayer implements Serializable- serialVersionUID:
- 609777460047517229L
-
-
Package deepnetts.net.layers.activation
-
Class deepnetts.net.layers.activation.LeakyRelu
class LeakyRelu extends Object implements Serializable-
Serialized Fields
-
a
float a
-
-
-
Class deepnetts.net.layers.activation.Linear
class Linear extends Object implements Serializable-
Serialized Fields
-
slope
int slope
-
-
-
Class deepnetts.net.layers.activation.Relu
class Relu extends Object implements Serializable -
Class deepnetts.net.layers.activation.Sigmoid
class Sigmoid extends Object implements Serializable -
Class deepnetts.net.layers.activation.SoftSign
class SoftSign extends Object implements Serializable -
Class deepnetts.net.layers.activation.Tanh
class Tanh extends Object implements Serializable
-
-
Package deepnetts.net.loss
-
Class deepnetts.net.loss.BinaryCrossEntropyLoss
class BinaryCrossEntropyLoss extends Object implements Serializable- serialVersionUID:
- 3236227875327534698L
-
Serialized Fields
-
outputError
float[] outputError
Cross entropy derivative is dE/dy = (y-t) / y*(1-y) Since denominator is same as sigmoid derivative, they are canceled when calculating delta in output layer: delta = dE/dy * dy/ds = y - t See http://neuralnetworksanddeeplearning.com/chap3.html#introducing_the_cross-entropy_cost_function http://peterroelants.github.io/posts/neural_network_implementation_intermezzo01/ -
outputErrorTsr
TensorBase outputErrorTsr
-
outputLayer
OutputLayer outputLayer
-
patternCount
float patternCount
-
patternLoss
float patternLoss
-
regularizationSum
float regularizationSum
-
totalError
float totalError
-
-
Class deepnetts.net.loss.CrossEntropyLoss
class CrossEntropyLoss extends Object implements Serializable- serialVersionUID:
- 3646652383636911829L
-
Serialized Fields
-
outputError
float[] outputError
Sum over all outputs and training samples Bishop, pg. 245, eq. 6.185 dE/ds = (y - t) (when Softmax activation is used) http://peterroelants.github.io/posts/neural_network_implementation_intermezzo02/ -
outputErrorTsr
TensorBase outputErrorTsr
-
patternCount
int patternCount
-
patternLoss
float patternLoss
-
patternLossTsr
TensorBase patternLossTsr
-
regularizationSum
float regularizationSum
-
targetIdx
int targetIdx
-
totalError
float totalError
-
-
Class deepnetts.net.loss.MeanSquaredErrorLoss
class MeanSquaredErrorLoss extends Object implements Serializable- serialVersionUID:
- 5004545721099801809L
-
Serialized Fields
-
outputError
float[] outputError
-
outputErrorTsr
TensorBase outputErrorTsr
-
patternCount
int patternCount
-
patternLoss
float patternLoss
-
patternLossTsr
TensorBase patternLossTsr
-
regularizationSum
float regularizationSum
-
totalError
float totalError
-
-
-
Package deepnetts.net.train
-
Class deepnetts.net.train.BackpropagationTrainer
class BackpropagationTrainer extends Object implements Serializable-
Serialization Methods
-
readObject
This method needs to be overridden to initialize transient fields after deserialization.- Parameters:
ois
-- Throws:
ClassNotFoundException
IOException
-
-
Serialized Fields
-
avgConvergenceSpeeed
float[] avgConvergenceSpeeed
-
batchMode
boolean batchMode
Set to true to use batch mode training -
batchSize
int batchSize
Size of mini batch. When full batch is used, this equals training set size -
checkpointEpochs
int checkpointEpochs
How many epochs for early stopping checkpoint. -
dropout
float dropout
-
earlyStopping
boolean earlyStopping
Use early stopping setting. -
earlyStoppingCheckpointCount
int earlyStoppingCheckpointCount
-
earlyStoppingMinLossChange
float earlyStoppingMinLossChange
Min delta between checkpoints to continue training -
earlyStoppingPatience
int earlyStoppingPatience
How many checkpoints to wait before stopping training -
epoch
int epoch
Current training epoch -
extendedLogging
boolean extendedLogging
-
learningRate
float learningRate
Global learning rate, which controls the step size for the weights adjustment. Effectively a percent of error used to change weight. -
lossFunction
LossFunction lossFunction
-
lossHistory
LinkedList<Float> lossHistory
-
maxEpochs
long maxEpochs
Training stops when this number of epochs is reached regardless of the total network error. One epoch represents one pass of the entire training set. -
momentum
float momentum
Global momentum parameter -
neuralNet
NeuralNetwork<?> neuralNet
A neural network to train. -
optType
OptimizerType optType
Optimization algorithm type -
prevCheckpointLoss
float prevCheckpointLoss
-
regL1
float regL1
-
regL2
float regL2
-
shuffle
boolean shuffle
Shuffle training set before each epoch during training. -
snapshotEpochs
int snapshotEpochs
-
snapshotPath
String snapshotPath
-
stopAccuracy
float stopAccuracy
-
stopError
float stopError
Training stops once total training error has reached this value. -
stopTraining
boolean stopTraining
Flag to stop training -
totalTrainingLoss
float totalTrainingLoss
-
trainAccuracy
float trainAccuracy
-
trainingSnapshots
boolean trainingSnapshots
-
valAccuracy
float valAccuracy
-
valLoss
float valLoss
Value of loss function calculated on validation set
-
-
-
-
Package deepnetts.net.train.opt
-
Class deepnetts.net.train.opt.AdaGradOptimizer
class AdaGradOptimizer extends Object implements Serializable- serialVersionUID:
- 2833280391108408107L
-
Serialized Fields
-
learningRate
float learningRate
-
prevBiasSqrSum
Tensor1D prevBiasSqrSum
-
prevGradSqrSum
TensorBase prevGradSqrSum
-
prevGradSqrSum2D
Tensor2D prevGradSqrSum2D
-
prevGradSqrSum4D
Tensor4D prevGradSqrSum4D
-
-
Class deepnetts.net.train.opt.AdamOptimizer
class AdamOptimizer extends Object implements Serializable- serialVersionUID:
- 6890113339772540541L
-
Serialized Fields
-
beta1
float beta1
-
beta2
float beta2
-
biasCorrection1
float biasCorrection1
-
biasCorrection2
float biasCorrection2
-
epoch
int epoch
-
learningRate
float learningRate
-
movAvgBiasSqrSum
Tensor1D movAvgBiasSqrSum
-
movAvgBiasSum
Tensor1D movAvgBiasSum
-
movAvgGradSqrSum
TensorBase movAvgGradSqrSum
-
movAvgGradSqrSum2D
Tensor2D movAvgGradSqrSum2D
-
movAvgGradSqrSum4D
Tensor4D movAvgGradSqrSum4D
-
movAvgGradSum
TensorBase movAvgGradSum
-
movAvgGradSum2D
Tensor2D movAvgGradSum2D
-
movAvgGradSum4D
Tensor4D movAvgGradSum4D
-
-
Class deepnetts.net.train.opt.MomentumOptimizer
class MomentumOptimizer extends Object implements Serializable- serialVersionUID:
- 6936741415174730939L
-
Serialized Fields
-
learningRate
float learningRate
-
momentum
float momentum
-
prevDeltaBiases
Tensor1D prevDeltaBiases
-
prevDeltaWeights
TensorBase prevDeltaWeights
-
prevDeltaWeights2D
Tensor2D prevDeltaWeights2D
-
prevDeltaWeights4D
Tensor4D prevDeltaWeights4D
-
-
Class deepnetts.net.train.opt.RmsPropOptimizer
class RmsPropOptimizer extends Object implements Serializable- serialVersionUID:
- 2804113940324244785L
-
Serialized Fields
-
beta
float beta
-
learningRate
float learningRate
-
movAvgBiasSqrSum
Tensor1D movAvgBiasSqrSum
-
movAvgGradSqrSum
TensorBase movAvgGradSqrSum
-
movAvgGradSqrSum2D
Tensor2D movAvgGradSqrSum2D
-
movAvgGradSqrSum4D
Tensor4D movAvgGradSqrSum4D
-
-
Class deepnetts.net.train.opt.SgdOptimizer
class SgdOptimizer extends Object implements Serializable- serialVersionUID:
- 7408169634780483571L
-
Serialized Fields
-
learningRate
float learningRate
-
-
-
Package deepnetts.tensor
-
Class deepnetts.tensor.Layout
class Layout extends Object implements Serializable-
Serialized Fields
-
cIdx
int cIdx
-
hIdx
int hIdx
-
nIdx
int nIdx
-
wIdx
int wIdx
-
-
-
Class deepnetts.tensor.Shape
class Shape extends Object implements Serializable-
Serialized Fields
-
dimensions
int[] dimensions
-
MAX_DIMENSIONS
int MAX_DIMENSIONS
-
numDimensions
int numDimensions
-
-
-
Class deepnetts.tensor.Tensor1D
class Tensor1D extends TensorBase implements Serializable -
Class deepnetts.tensor.Tensor2D
class Tensor2D extends TensorBase implements Serializable-
Serialized Fields
-
cols
int cols
-
colsCache
float[][] colsCache
-
layout
Layout layout
-
rows
int rows
-
rowsCache
float[][] rowsCache
-
-
-
Class deepnetts.tensor.Tensor3D
class Tensor3D extends TensorBase implements Serializable-
Serialized Fields
-
cols
int cols
-
depth
int depth
-
rows
int rows
-
-
-
Class deepnetts.tensor.Tensor4D
class Tensor4D extends TensorBase implements Serializable-
Serialized Fields
-
cols
int cols
-
depth
int depth
-
fourthDim
int fourthDim
-
rows
int rows
-
-
-
Class deepnetts.tensor.TensorBase
class TensorBase extends Object implements Serializable- serialVersionUID:
- 9123299065043860349L
-
Serialized Fields
-
numDimensions
int numDimensions
-
shape
Shape shape
-
values
float[] values
Values stored in this tensor make it final , only input layer and tests sets values
-
-
-
Package deepnetts.util
-
Exception Class deepnetts.util.DeepNettsException
class DeepNettsException extends RuntimeException implements Serializable -
Class deepnetts.util.ImagePreprocessing
class ImagePreprocessing extends Object implements Serializable-
Serialized Fields
-
invertPixels
boolean invertPixels
-
isEnabled
boolean isEnabled
-
mean
TensorBase mean
-
scaleImage
boolean scaleImage
-
subMean
boolean subMean
-
-
-
Exception Class deepnetts.util.LicenseChecker.LicenceException
class LicenceException extends RuntimeException implements Serializable -
Class deepnetts.util.TypedProperties
class TypedProperties extends Properties implements Serializable
-