Uses of Class
deepnetts.net.NeuralNetwork
Packages that use NeuralNetwork
Package
Description
Support for automatically building deep learning models using hyper-parameter search.
Evaluation procedures for machine learning models, used to estimate how good models are performing when given new data that (that was not used for training).
Neural network architectures with their corresponding builders.
Commonly used loss functions, which are used to calculate error during the training as a difference between predicted and target output.
Training algorithms and related utilities.
Various utility classes including Tensor, image operations, multithreading, exceptions etc.
- 
Uses of NeuralNetwork in deepnetts.automlClasses in deepnetts.automl with type parameters of type NeuralNetworkModifier and TypeInterfaceDescriptioninterfaceNetworkFactory<T extends NeuralNetwork>Base interface for all network factories.Methods in deepnetts.automl that return NeuralNetworkMethods in deepnetts.automl that return types with arguments of type NeuralNetworkModifier and TypeMethodDescriptionfinal javax.visrec.ml.eval.Evaluator<NeuralNetwork, javax.visrec.ml.data.DataSet<? extends MLDataItem>> HyperParameterSearch.getEvaluator()Method parameters in deepnetts.automl with type arguments of type NeuralNetworkModifier and TypeMethodDescriptionHyperParameterSearch.evaluator(javax.visrec.ml.eval.Evaluator<NeuralNetwork, javax.visrec.ml.data.DataSet<? extends MLDataItem>> evaluator) 
- 
Uses of NeuralNetwork in deepnetts.evalMethods in deepnetts.eval with parameters of type NeuralNetworkModifier and TypeMethodDescriptionClassifierEvaluator.evaluate(NeuralNetwork neuralNet, javax.visrec.ml.data.DataSet<? extends MLDataItem> testSet) Performs classifier evaluation and returns classification performance metrics.javax.visrec.ml.eval.EvaluationMetricsRegresionEvaluator.evaluate(NeuralNetwork neuralNet, javax.visrec.ml.data.DataSet<? extends MLDataItem> testSet) static ClassificationMetricsEvaluators.evaluateClassifier(NeuralNetwork<?> neuralNet, javax.visrec.ml.data.DataSet<? extends MLDataItem> testSet) static RegressionMetricsEvaluators.evaluateRegressor(NeuralNetwork<?> neuralNet, javax.visrec.ml.data.DataSet<? extends MLDataItem> testSet) Evaluates specified neural network with test set, as a regression model and returns basic regression evauation metrics.
- 
Uses of NeuralNetwork in deepnetts.netSubclasses of NeuralNetwork in deepnetts.netModifier and TypeClassDescriptionclassConvolutional neural network is an extension of feed forward network, which can include 2D and 3D adaptive preprocessing layers (Convolutional and MaxPooling layer), which is specialized to learn to recognize features in images.final classFeed forward neural network architecture, also known as Multi Layer Perceptron.
- 
Uses of NeuralNetwork in deepnetts.net.lossMethods in deepnetts.net.loss with parameters of type NeuralNetworkModifier and TypeMethodDescriptiondefault floatLossFunction.valueFor(NeuralNetwork nnet, javax.visrec.ml.data.DataSet<? extends MLDataItem> dataSet) Calculates and returns loss function value for the given neural network and data set.Constructors in deepnetts.net.loss with parameters of type NeuralNetworkModifierConstructorDescriptionBinaryCrossEntropyLoss(NeuralNetwork neuralNet) CrossEntropyLoss(NeuralNetwork neuralNet) MeanSquaredErrorLoss(NeuralNetwork neuralNet) Creates a new mean squared error loss for the given neural network.
- 
Uses of NeuralNetwork in deepnetts.net.trainMethods in deepnetts.net.train that return NeuralNetworkModifier and TypeMethodDescriptionKFoldCrossValidation.getBestNetwork()BackpropagationTrainer.getNeuralNetwork()Returns a neural network trained by this trainer.Methods in deepnetts.net.train with parameters of type NeuralNetworkMethod parameters in deepnetts.net.train with type arguments of type NeuralNetworkModifier and TypeMethodDescriptionKFoldCrossValidation.Builder.evaluator(javax.visrec.ml.eval.Evaluator<NeuralNetwork, javax.visrec.ml.data.DataSet<? extends MLDataItem>> evaluator) Constructors in deepnetts.net.train with parameters of type NeuralNetworkModifierConstructorDescriptionBackpropagationTrainer(NeuralNetwork neuralNet) Creates an instance of BackpropagationTrainer for the given neural network to train.
- 
Uses of NeuralNetwork in deepnetts.utilMethods in deepnetts.util that return NeuralNetworkModifier and TypeMethodDescriptionstatic NeuralNetworkFileIO.createFromFile(File file) static NeuralNetworkFileIO.createFromJson(File file) static NeuralNetworkFileIO.createFromJson(String jsonStr) static NeuralNetworkFileIO.createFromJson(org.json.JSONObject jsonObj) Methods in deepnetts.util with parameters of type NeuralNetworkModifier and TypeMethodDescriptionstatic voidTensorflowUtils.importWeights(NeuralNetwork network, String weightsFileName) static StringFileIO.toJson(NeuralNetwork<?> nnet) Returns JSON representation of specified neural network object.static voidFileIO.writeToFile(NeuralNetwork neuralNet, String fileName) Serializes specified neural network to file with specified file.static voidFileIO.writeToFileAsJson(NeuralNetwork neuralNet, String fileName)