Uses of Interface
deepnetts.data.MLDataItem
Packages that use MLDataItem
Package
Description
Support for automatically building deep learning models using hyper-parameter search.
Data structures to store example data used for building machine learning models.
Data normalization methods, used to scale data to specific range, in order to make them suitable for use by a neural network.
Evaluation procedures for machine learning models, used to estimate how good models are performing when given new data that (that was not used for training).
Neural network architectures with their corresponding builders.
Commonly used loss functions, which are used to calculate error during the training as a difference between predicted and target output.
Training algorithms and related utilities.
-
Uses of MLDataItem in deepnetts.automl
Methods in deepnetts.automl that return types with arguments of type MLDataItemModifier and TypeMethodDescriptionfinal javax.visrec.ml.eval.Evaluator
<NeuralNetwork, javax.visrec.ml.data.DataSet<? extends MLDataItem>> HyperParameterSearch.getEvaluator()
Method parameters in deepnetts.automl with type arguments of type MLDataItemModifier and TypeMethodDescriptionHyperParameterSearch.evaluator
(javax.visrec.ml.eval.Evaluator<NeuralNetwork, javax.visrec.ml.data.DataSet<? extends MLDataItem>> evaluator) -
Uses of MLDataItem in deepnetts.data
Classes in deepnetts.data with type parameters of type MLDataItemModifier and TypeClassDescriptionclass
TabularDataSet<T extends MLDataItem>
Basic data set with tabular data.Classes in deepnetts.data that implement MLDataItemModifier and TypeClassDescriptionclass
Example image to train a deep learning model.static class
Represents a basic data set item (single row) with input tensor and target vector in a data set.Methods in deepnetts.data that return types with arguments of type MLDataItemModifier and TypeMethodDescriptionjavax.visrec.ml.data.DataSet
<MLDataItem> TrainTestSplit.getTestSet()
javax.visrec.ml.data.DataSet
<MLDataItem> TrainTestSplit.getTrainingSet()
Constructor parameters in deepnetts.data with type arguments of type MLDataItemModifierConstructorDescriptionTrainTestSplit
(javax.visrec.ml.data.DataSet<MLDataItem> trainingSet, javax.visrec.ml.data.DataSet<MLDataItem> testSet) -
Uses of MLDataItem in deepnetts.data.norm
Method parameters in deepnetts.data.norm with type arguments of type MLDataItemModifier and TypeMethodDescriptionvoid
DecimalScaler.apply
(javax.visrec.ml.data.DataSet<MLDataItem> dataSet) Performs normalization on the given inputs.void
MaxScaler.apply
(javax.visrec.ml.data.DataSet<MLDataItem> dataSet) Performs normalization on the given inputs.void
MinMaxScaler.apply
(javax.visrec.ml.data.DataSet<MLDataItem> dataSet) Performs normalization on the given inputs.void
RangeScaler.apply
(javax.visrec.ml.data.DataSet<MLDataItem> dataSet) Performs normalization on the given inputs.void
Standardizer.apply
(javax.visrec.ml.data.DataSet<MLDataItem> dataSet) Constructor parameters in deepnetts.data.norm with type arguments of type MLDataItemModifierConstructorDescriptionDecimalScaler
(javax.visrec.ml.data.DataSet<MLDataItem> dataSet) Creates a new instance of max normalizer initialized to max values in given data set.MaxScaler
(javax.visrec.ml.data.DataSet<MLDataItem> dataSet) Creates a new instance of max normalizer initialized to max values in given data set.MinMaxScaler
(javax.visrec.ml.data.DataSet<MLDataItem> dataSet) Creates a new instance of max normalizer initialized to max values in given data set.Standardizer
(javax.visrec.ml.data.DataSet<MLDataItem> dataSet) -
Uses of MLDataItem in deepnetts.eval
Method parameters in deepnetts.eval with type arguments of type MLDataItemModifier and TypeMethodDescriptionClassifierEvaluator.evaluate
(NeuralNetwork neuralNet, javax.visrec.ml.data.DataSet<? extends MLDataItem> testSet) Performs classifier evaluation and returns classification performance metrics.javax.visrec.ml.eval.EvaluationMetrics
RegresionEvaluator.evaluate
(NeuralNetwork neuralNet, javax.visrec.ml.data.DataSet<? extends MLDataItem> testSet) static ClassificationMetrics
Evaluators.evaluateClassifier
(NeuralNetwork<?> neuralNet, javax.visrec.ml.data.DataSet<? extends MLDataItem> testSet) static RegressionMetrics
Evaluators.evaluateRegressor
(NeuralNetwork<?> neuralNet, javax.visrec.ml.data.DataSet<? extends MLDataItem> testSet) Evaluates specified neural network with test set, as a regression model and returns basic regression evauation metrics. -
Uses of MLDataItem in deepnetts.net
Method parameters in deepnetts.net with type arguments of type MLDataItemModifier and TypeMethodDescriptionjavax.visrec.ml.eval.EvaluationMetrics
NeuralNetwork.test
(javax.visrec.ml.data.DataSet<? extends MLDataItem> testSet) Tests how good are predictions of this network using specified test set.void
NeuralNetwork.train
(javax.visrec.ml.data.DataSet<? extends MLDataItem> trainingSet) Trains the neural network using specified training set. -
Uses of MLDataItem in deepnetts.net.loss
Method parameters in deepnetts.net.loss with type arguments of type MLDataItemModifier and TypeMethodDescriptiondefault float
LossFunction.valueFor
(NeuralNetwork nnet, javax.visrec.ml.data.DataSet<? extends MLDataItem> dataSet) Calculates and returns loss function value for the given neural network and data set. -
Uses of MLDataItem in deepnetts.net.train
Method parameters in deepnetts.net.train with type arguments of type MLDataItemModifier and TypeMethodDescriptionKFoldCrossValidation.Builder.evaluator
(javax.visrec.ml.eval.Evaluator<NeuralNetwork, javax.visrec.ml.data.DataSet<? extends MLDataItem>> evaluator) void
BackpropagationTrainer.setTestSet
(javax.visrec.ml.data.DataSet<MLDataItem> testSet) Test set is used after the training to estimate performance of the trained model and generalization ability with new data.void
BackpropagationTrainer.train
(javax.visrec.ml.data.DataSet<? extends MLDataItem> trainingSet) Runs training using specified training set.void
BackpropagationTrainer.train
(javax.visrec.ml.data.DataSet<MLDataItem> trainingSet, javax.visrec.ml.data.DataSet<MLDataItem> validationSet) Runs training using given training and validation sets.void
Trainer.train
(javax.visrec.ml.data.DataSet<? extends MLDataItem> trainingSet) Trains this model using specified training set.