Why Java Will Dominate the Future of Machine Learning, AI, and Big Data

Great presentation by Bernard Traversat,  Head of the Java platform development, at Oracle Code One 2018, San Francisco. Here are key points:

  • Entire Big Data stack for storing data is written in Java (Hadoop, Spark, Kafka, Elastic Search, …)
  • Java has enormous ecosystem of tools and libraries
  • Enterprises run on Java
  • Bringing new technology into enterprise (such as AI, ML) is a huge challange
    because there is a lot to learn, and that gives Java and JVM huge advantage because enterprise allready knows Java and JVM. Technology needs to be understood by the enterprise.
  • Easy access and lower cost to develop, deploy and maintain:
    • easy access to developers
    • cost efficency (cost vs ROI)
    • maintainability as the code size is growing and aging (thanks to code readability)
  • Java is in the foundations of the cloud
  • Incoming Java innovations for ML, AI and BigData (openjdk.java.net):
    •  Panama, more efficent replacement for JNI (faster and easier communication with GPU).  Also the support for vector computing natively inside the JVM and Vector API
    • Valhalla, new type system for more efficient manipulation with data in memory
    • Loom, lightweight threads for massive parallel processing
    • ZGC, order of magnitude better performance for memory management
  • To conclude:
    • Java is #1 Programming Language
    • There are 12 Milion Java Developers
    • 38 Billion active JVM-s
    • 21 Billion cloud connected VM

The Most Significant JSR Award goes to Visual Recognition API, Code One, San Francisco

The most significant JSR Award, which is given by the official organization for Java technology standardization, Java Community Process (JCP) was awarded to Visual Recognition API, proposed and led by Zoran Sevarac (Deep Netts CEO), Java Champion Frank Greco (Crossroads Technologies), and Sandhya Kapoor (IBM Watson Architect). The proposal is official supported by IBM, and it is in First Early Draft Review phase. The award was announced during the Oracle Code One in San Francisco.
This award shows great interest and potentialfor development of visual recognition and machine learning technologies, and creating standards that would make it easier for Java developers to innovate and work with these technologies.

Dukes Choice Award 2018 goes to Apache Net Beans at Code One, San Francisco

Apache Net Beans project has won the most prestigious award for the innovationon Java platform at Oracle Code One Conference in San Francisco.
Zoran Sevarac, Deep Netts CEO, as a long time NetBeans contributor was part of the group who received the award. Also, this is of great importance for Deep Netts Platform, since our tools are based on API’s from Net Beans Platform. Also this shows the dynamic development and innovation capacity of oneof the main Java IDE’s used by more than 1 000 000 Java developers (according to official statistics).

See full video from the Dukes Choice Award at
https://twitter.com/OracleDevs/status/1054867200144601088

Read the official announcement from Oracle:
https://blogs.oracle.com/java/announcing-2018-dukes-choice-award-winners

Also check out the great interview with Geertjan Wielenga to get the idea whats going on behind the scene with Apache Net Beans, and the challanges durng the transition from Oracle to Apache:
https://www.pscp.tv/OracleDevs/1YqxoglXEYExv?t=48s

Machine Learning For Software Developers in 45 minutes, Code One, San Francisco

Machine Learning for Software Developers in 45 minutes at Oracle Code One conference in San Francisco, by Deep Netts CEO Zoran Sevarac and another Java champion Frank Greco,  (from Crossroads Technologies) was great success. It was full room of almost 300  Java developers looking for the fast way to get into the magic world of machine learning, but using what they allready know – Java, and skiping all the confusing parts for the beginners related to math formulas and statistics.
Judging by the comments and discussion after the session we have succeded in making fast introduction, and explaining essentials with hands on approach that typical Java developer need to get started and make next steps. The session included brief explanationof basic supervised machine learning techniques including:

  • Linear Regression
  • Logistic Regression
  • Feed Forward Neural Networks
  • Convolutional Neural Networks

This presentation will be the base for the series of blog posts on this topic.
Slides are available here